
2768 Inorganic Chemistry, Vol. 9, No. 12, 1970 
- 

BETTY R. DAVIS AND JAMES A. IBERS 

CONTRIBUTION FROM THE DEPARTMENT O F  C H E M I S T R Y ,  

NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS A0201 

The Bonding of Molecular Nitrogen. 11. The Crystal and Molecular 
Structure of Azidodinitrogenbis(ethylenediamine)ruthenium(II) 
Hexafluorophosphate 

BY BETTY R. DAVIS AND JAMES A. IBERS* 

Received A p k l  16, 1970 

The crystal and molecular structure of the molecular nitrogen complex azidodinitrogenbis(etliylenetliamine)rutenium(II) 
hexafluorophosphate, [Ru(N3)( N ~ ) ( N H z C H ~ C H ~ N H ~ ) ~ ]  [I'Fe], has been determined from three-dimensional X-ray data col- 
lected by counter techniques. The material is X-ray sensitive and it was necessary to use four different crystals for thc data 
collection. The Ru-N of (NI) bond distance is 
1.894 (9) A and the Ru-N-N bond angle is 179.3 (9)'; the Ru-N (of N3-) bond distance is 2.121 (8) 8, and t h e  Ru-N-N 
bond angle is 116.7 (7)". ' The Ru-N distances to the nitrogen atoms of the ethylenediamine groups range from 2.144 (9) to 
2.108 (9) A, with an  ave age distance of 2.125 (19) A, Crystal data:  monoclinic, space group Cth6-P21/7t; a = 9.97  (1) A, 
b = 12.01 (1) A, c = 12.59 (1) A, P = 102.4 (3 ) ' ,  T h e  structure 
was refined using 1375 independent reflections from a litnited data set for which F2 > 3u(F2),  and thc refinement converged 
to a conventional R factor (on F )  of 5.6%. 

The central metal atom is coordinated octahedrally to six nitrogen atoms. 

f 
= 4 ;  dobsd = 2.00 =k 0.03 g/cm3, donlcd = 1.98 ,g/cm3. 

Introduction 
In the previously reported structure of CoH(Nz)- 

(P(C6H&)3,1 we found that the Co-N bond is 1.807 
(23) A and by comparison with the Co-N distance of 
1.936 (15) A in [ C O ( N H ~ ) ~ ] I ~ ~  we concluded that, as 
expected, the metal-nitrogen (of N2) bond has some 
multiple-bond character. In carrying out this present 
study of the bonding of molecular nitrogen, we chose 
azidodinitrogenbis(ethylenediamine)ruthenium(II) hex- 
afluorophosphate because the central metal atom, 
ruthenium, was expected to be coordinated to three 
different types of nitrogen atoms. Thus we expected 
to  obtain a direct, intramolecular comparison between 
a Ru-N single bond length and the length of the Ru-N 
bond when molecular nitrogen is the coordinating lig- 
and. The compound is of further interest because it 
contains a coordinated azido group. Only a limited 
number of structures are known in which there is an 
azido group coordinated to a transition metal. This 
work bears directly on our previous studies of metal- 
nitrogen multiple bonds3 

Collection and Reduction of Intensity Data 
The material is prepared4 by treating trans- [RuC12- 

(NHzCH7CH2NH2)z]C1 with silver p-toluenesulfonate 
and, after filtering, adding NaN3. This solution is 
allowed to stand and after several hours, a saturated 
solution of NaPF6 is added. The crystals were kindly 
supplied by Dr. P. S. Sheridan. The N-N (of Nz) 
stretching frequency in this compound is 2103 cm-l, a t  
the lower end of the range 2105-2167 cm-' reported for 
the R U ( N H ~ ) ~ ( N ~ ) ~ +  salts6 
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A series of Weissenberg and precession photographs 
taken with Cu KE radiation showed the crystals to be 
monoclinic with 2/m Laue symmetry. The systematic 
extinctions observed were: h01 for h + I odd and 0kO 
for k odd. These extinctions are consistent with the 
space group Czia5-P21/n. 

A crystal was mounted, along the long dimension 
[ l O O ] ,  in a thin-walled glass capillary for data collection 
on a Picker four-circle automatic diffractometer. It 
was observed that the material is extremely X-ray 
sensitive. The mosaic spread of the crystal, as deter- 
mined by o scans taken with a narrow source and open 
counter, increased greatly after only about 12 hr of 
exposure of the crystal to X-rays. This crystal was 
used to establish the following experimental conditions 
for data collection. The data were to be collected using 
Mo Kal radiation (A 0.7093 a) and the diffracted beam 
was to be filtered through 3 mils of Nb foil. A takeoff 
angle of 2.2' would be used. At this takeoff angle, the 
peak intensity of a strong reflection was about 80% of 
the maximum value as a function of takeoff angle. 
The counter aperture selected was 4.0 mrn X 4.0 mm 
and was positioned 29 cm from the crystal. The pulse 
height analyzer was set for approximately a 90% win- 
dow, centered on the Mo K s  peak. The data were to 
be collected by the 0-20 scan technique a t  a scan rate of 
1' in 2O/min. An asymmetric scan range of 0.75' on 
the low-angle side and 1.25' on the high-angle side of 
the calculated 20 values (Mo Kal) wouId be used. 
Stationary-counter, stationary-crystal background 
counts of 10 sec were to  be taken at  each end of the 
scan range, Attenuators were inserted automatically 
when the intensity of the diffracted beam exceeded 
7000 counts/sec during the scan ; the attenuators were 
Cu foil, their thicknesses being chosen to give attenua- 
tor factors of approximately 2.2. After these experi- 
mental conditions were determined, Friedel pairs of 
reflections (hkl and hEl) were collected in the 20 range 
0-25'. These data were corrected for decomposition, 
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equivalent forms were averaged, and values of Fo2 were 
derived. These were then used as input to a Patterson 
function calculation. 

The rapid decomposition of this crystal indicated 
unusual sensitivity of the material to X-rays. There- 
fore, we had no choice but to collect data on several 
crystals. We will refer to these new crystals as I-IV. 
All crystals were mounted in thin-walled glass capil- 
laries along the long dimension [loo]. The experi- 
mental conditions described above were the same for 
data collection on each of the four crystals. In  each 
case, the same ten reflections were centered on the 
diffractometer and used in a least-squares refinement of 
setting angles to determine cell constants,6 and the same 
three reference reflections (400, 040, 004) were used as 
a check on crystal decomposition. These reference 
reflections were measured every 100 reflections during 
the early stage of each run and every 50 reflections in 
the later stages. The cell constants, determined by 
methods previously described,6 are as follows (Mo Ka1 
radiation; X 0.7093 A) :  a = 9.97 (1) A, b = 12.01 (1) 
AI c = 12.59 (1) A, /3 = 102.4 ( 3 ) O ,  a t  22’. The details 
on each data set are given in Table I. The data in the 

TABLE I 
DETAILS O F  DATA COLLECTION 

Av 
Crystal Dimensions,a No. of 28 range, decompn, 
no. mm observations* deg % 
I 0.32 X 0 . 1 2  X 0 . 1 3  759 20-35 45 
I1 0.44 X 0 . 1 4 X  0.14 661 33.5-41 79 
111 0.60 X 0 . 1 4  X 0 . 1 5  666 0-25 40 

I V  0.64 X 0.10 X 0.12 60OC 42-49 55 
40-43 

a Parallel to  [ 1001, [O l l ] ,  and [OlT], respectively, of the paral- 
lelepiped-shaped crystals. * Owing to  the problem of decom- 
position, only unique reflections were collected. Although 
there were 882 reflections in this 20 range, owing to the weak 
intensity at higher 20 values coupled with decomposition, only 
600 reflections were collected. 

20 range 0-25’ were recollected on crystal I11 because 
the crystal which was used for collection of Friedel 
pairs of reflections (hkl and Eli) in this 20 range was 
first used for determination of the experimental condi- 
tions for data collection. We felt, therefore] that this 
crystal had severely decomposed even before data col- 
lection was begun and therefore we did not have an 
accurate measurement of decomposition on this early 
block of data. In general, all three standards de- 
creased in intensity a t  approximately the same rate. 
A correction for decomposition was applied to each 
data set based on the average decomposition of the 
three standards as a function of X-ray exposure. Each 
block of data, with decomposition correction applied, 
was processed in the manner previously described,6 
with a value of 0.04 for 1, selected for the calculation of 
a(1). The values of I and a ( I )  were corrected for 
Lorentz-polarization effects. The data on the four 

(6) P. W. R.  Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197 
(1967). 

crystals were interscaled using common reflections.7 
At first, all the data for which I > 3a(I) were used for 
interscaling and the interscaled data were used in the 
solution of the structure. We found, after solving the 
structure] that data from crystal 11, which suffered the 
greatest average decomposition, were markedly inferior 
in the agreement between 1 Fol and 1 F,], where 1 FoI and 
IF,I are the observed and calculated structure ampli- 
tudes. Therefore, the data were again interscaled 
using only crystals I, 111, and IV. Of the resultant 
1783 unique reflections, obtained by omitting data in 
the range 35 < 20 < 40°, only the 1375 which had F2 > 
3a(F2) were used in the final refinement. 

The absorption coefficient of this compound for Mo 
K a  radiation is 11.9 cm-’. On the basis of absorption 
correction tests,’ a correction for absorption proved 
unnecessary as the transmission factors did not vary by 
more than 1.5% for a given crystal. 

Solution and Refinement 
All least-squares refinements were carried out on F, 

the function minimized being Zw(lFoI - lFc1)21 where 
the weight w is taken as 4FO2/a2(Fo2). In  all calcula- 
tions of F,, the atomic scattering factors for the ru- 
thenium and hydrogen atoms were those calculated by 
Cromer and Waber8 and by Stewart, Davidson, and 
S i m p ~ o n , ~  respectively; scattering factors for all other 
atoms were taken from the usual tabulation.lO The 
effects of anomalous dispersion of the ruthenium and 
phosphorus atoms were included in the calculation of 
F,;” the values of Af’ and Af” used were those calcu- 
lated by Cromer.12 

The ruthenium atom and six nitrogen atoms co- 
ordinated to it were found from a Patterson function’ 
which was based on the data obtained on the initial 
crystal. These seven atoms were refined and structure 
factors were calculated. A difference Fourier synthesis 
revealed the phosphorus atom and provided no evi- 
dence of disorder problems. At this point we collected 
the data on crystals I-IV. 

After the data from crystals I-IV were corrected for 
decomposition and interscaled, structure factors were 
calculated using the initial positions of the ruthenium, 
phosphorus, and six nitrogen atoms; this was followed 
by a difference Fourier synthesis. The positions of the 
six fluorine, four carbon, and the other three nitrogen 
atoms were found from this map. Three cycles of 
refinement were carried out in which the ruthenium 
and phosphorus atoms were refined with anisotropic 
thermal parameters] the six fluorine atoms were refined 

(7) In addition to various local programs, Patterson functions and Fourier 
syntheses were calculated using a local version of Zalkin’s FORDAP. Ab- 
sorption correction tests were made by a modification of W. C. Hamilton’s 
GO NO^ and data were interscaled using Hamilton’s INSCALE. Refinement 
and structure factor calculations were done by our least-squares program, 
NUCLS, which, in its nongroup form, resembles the Busing-Levy ORFLS. 
Errors in derived quantities were obtained from the Busing-Levy ORFFE 
program, and drawings were made with use of Johnson’s ORTEP program. 

(8) D. T. Cromer and J. A. Waber, Acta Crystallog?., 18, 104 (1965). 
(9) R.  F. Stewart, E. R. Davidson, and W, T. Simpson, J. Chem. Phys. ,  

(10) “International Tables for X-Ray Crystallography,” Vol. 111, 

(11) J. A. Ibers and W. C. Hamilton, A d a  Cyystallogr., 17, 781 (1964). 

40,3175 (1965). 
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TABLE I1 
POSITIONAL AND THERMAL PARAMETERS FOR [RU(N~)(N~)(NH~CH~CH~NH~)~] [PFB] 

Atom X Y I B l P  8 2 2  Baa 812 Bia 823 
RU 0.22316 (8)' 0.16331 (7) 0.36589 (6) 0.00821 (10) 0.00482 (6) 0.00496 (6) -0.00024 (7) -0,00065 (5) -0,00012 (6) 
N1 0.4315(9) 0.1792 (6) 0.3583 (7) 0.0130 (14) 0.0055 (7) 0.0054 (7) -0.0011 (7) -0.0000 (7) -0.0001 (6) 
C1 0.4626 (11) 0.0997 (9) 0.2782 (10) 0.0078 (13) 0.0080 (10) 0.0076 (10) 0,0001 (9) 0,0018 (9) -0.0005 (8) 
C2 0.3445 (13) 0.0981 (9) 0.1805 (9) 0.0142 (18) 0.0085 (11) 0.0048 (9) -0.0008 (11) 0,0014 (10) -0.0001 (8) 
N2 0.2149 (lo) 0.0737 (7) 0.2176 (7) 0.0130 (13) 0.0056 (7) 0.0055 (7) -0,0012 (8) -0,0021 (7) -0,0002 (6) 
N3 0.2329 (9) 0.2613 (7) 0.5064 (7) 0,0082 (11) 0.0077 (8) 0,0060 (7) 0.0006 (7) -0.0014 (7) -0.0013 (6) 
C3 0.0935 (13) 0.2920 (11) 0.5177 (10) 0.0123 (18) 0.0097 (11) 0.0078 (10) 0.0010 (11) 0.0014 (11) -0,0038 (9) 
C4 -0.0014 (11) 0.1959 (10) 0.4798 (10) 0.0068 (13) 0.0095 (11) 0,0096 (12) 0,0024 (9) 0.0031 (10) -0.0004 (9) 
N4 0.0094 (9) 0.1624 (7) 0.3707 (7) 0.0095 (11) 0.0067 (7) 0.0068 (7) -0.0007 (7) 0.0003 (7) -0,0010 (6) 
N5 0,1885 (8) 0.3134 (6) 0.2753 (7) 0.0107 (11) 0.0048 (7) 0.0057 (7) 0.0002 (6) -0.0020 (7) 0.0003 (5) 
N 6  0.1047 (10) 0.3107 (7) 0.1935 (8) 0.0130 (14) 0.0061 (8) 0.0061 (8) -0,0010 (7) 0,0002 (8) 0,0004 (6) 
N7 0.0234 (11) 0.3084 (9) 0.1139 (8) 0.0174 (17) 0.0110 (11) 0.0072 (9) -0.0015 (10) -0,0027 (9) 0.0014 (8) 
N8 O.ZSll(9) 0.0314 (8) 0.4493 (7) 0.0120 (12) 0.0065 (8) 0.0048 (7) 0.0005 (7) 0.0021 (7) -0,0002 (6) 
N9 0.2828 (11) -0.0453 (8) 0.4987 (9) 0.0216 (18) 0,0073 (9) 0.0081 (9) 0.0034 (10) 0.0039 (10) 0.0046 (8) 
P -0.1856 (4) -0.0755 (3) 0.1773 (3) 0.0131 (5) 0.0067 (3) 0,0098 (3) 0.0012 (3) -0.0011 (3) -0.0017(2) 
F1 -0.0326 (8) -0.0994 (6) 0.2389 (6) 0,0152 (12) 0,0118 (8) 0.0142 (9) 0.0014 (8) -0.0042 (8) -0,0021 (7) 
F2 -0.3353 (9) -0.0509 (8) 0.1146 (8) 0.0188 (13) 0.0140 (10) 0.0240 (12) 0.0051 (9) -0,0117 (10) -0,0050 (9) 
F3  -0.2257 (12) -0.1931 (8) 0.2100 (10) 0.0333 (22) 0.0125 (10) 0.0259 (16) -0.0099 (12) -0.0070 (13) 0.0039 (10) 
F4 -0.1371 (12) 0.0405 (8) 0.1538 (10) 0.0351 (21) 0.0110 (9) 0.0270 (15) -0.0042 (11) -0,0118 (14) 0,0083 (10) 
F5 -0.1553 (13) -0.1282 (11) 0.0754 (8) 0.0355 (23) 0.0355 (20) 0.0108 (9) 0.0164 (17) -0.0012 (12) -0.0073 (12) 
F6 -0.2100 (10) -0,0268 (11) 0.2851 (9) 0.0243 (19) 0.0335 (19) 0.0187 (12) 0.0028 (15) 0.0073 (12) -0,0124 (13) 
a The form of the thermal ellipsoid is exp[ - (pnhz  4- &k2 4- P d 2  f 2 P d k  4- 2PlahZ 4- 28&)]. Xurnbers in parentheses given here 

and in other tables are estimated standard deviations in the least significant digits. 

as an octahedral group with an overall group thermal 
parameter, and the other atoms were refined with iso- 
tropic thermal parameters. At this time the contribu- 
tions of the hydrogen atoms were calculated. Hydro- 
gen atom positions for the two hydrogen atoms on each 
of the carbon and nitrogen atoms of the ethylenediamine 
groups were calculated from idealized tetrahedral geom- 
etry about the atom (C-H, N-H = 0.90 A). The 
fixed contributions of the 16 hydrogen atoms to F, were 
calculated using an isotropic thermal parameter of 5.0 
A 2  for each atom. Two cycles of refinement in which 
the six fluorine atoms were refined as a group with an 
overall group thermal parameter and all other atoms 
were refined with anisotropic thermal parameters gave 
agreement factors RI of 15.1% and R2 of 18.OyG, where 
Rl = B//FoI - ~ F c / ~ / B ~ F o ~  and R2 (or weighted R factor) 
= (Zw(\Fo/ - 1 Fc~)2/BwFoz)1'2. Structure factors 
were calculated and a statistical analysis indicated that 
the data from crystal I1 were inferior to the data from 
the other crystals. 

Therefore, the data were scaled again, as described 
above, with the omission of those collected from crystal 
11. This resulted in a data set which omitted reflec- 
tions in the range 35' < 28 < 40'. The input param- 
eters for the first cycle of refinement using this limited 
data set were those derived from the complete data set. 
After three cycles of refinement the positions of the 16 
hydrogen atoms were recalculated and these were added 
as a fixed contribution to F,. After three more cycles 
of refinement, in which all 21 atoms (ruthenium, phos- 
phorus, six fluorine, four carbon, and nine nitrogen 
atoms) were refined anisotropically and data in the 
range 35' < 28 < 40" were omitted, convergence was 
reached a t  RI = 5.6% and Rz = 6.7YG. 

A statistical analysis of Zw(( Fol - 1 as a function 
of IFo] and X- l  sin 8 revealed no unexpected trends. 
In  particular, no correction for extinction appeared 
necessary. The error in an observation of unit weight 
is 2.6 electrons. 

The positional and thermal parameters derived from 

the last cycle of refinement are presented in Table I1 
along with the associated standard deviations in these 
parameters as derived from the inverse matrix. The 
idealized positional parameters of the hydrogen atoms 
of the ethylenediamine rings are listed in Table 111. 

TABLE 111 
DERIVED PARAMETERS FOR 

ETHYLENEDIAMINE HYDROGEN A T O M S ~  

NfHlb  0.450 0.249 0.335 
Nf H2 0.488 0.167 0.423 
C lHl  0.470 0.030 0,309 
Cf H2 0.542 0.115 0.260 
C2H 1 0.356 0.051 0.129 
C2H2 0.333 0.170 0.149 
N2H 1 0.216 -0.002 0.230 
N2H2 0.143 0.091 0.167 
N3H 1 0.272 0.223 0.568 
N3H2 0.279 0.325 0,505 
C3H1 0.090 0.308 0.589 
C3H2 0.061 0.353 0.478 
C4H 1 -0.091 0.220 0.482 
C4H2 0.019 0.141 0.529 
N4H 1 -0.038 0.212 0.320 
N4H2 -0,028 -0,095 0.355 

X Y z 

Q All atoms have B = 5 wz. N f  H1 and Nf H2 are attached to 
iY1, Cf H1 and Cf H2 are attached to C1, etc. 

The final values of 101 FoI and 101 Fa/ (in electrons) are 
given in Table IV for the 1375 reflections which were 
used in the final refinement. For the 408 reflections 
omitted from the refinement for which Fo2 < 3a(FO2), 
none had IFoz - Fo2/ > 4a(FO2). Thus these data are 
not included in Table IV. 

In  principle there are no inherent dangers in dropping 
a block of data out of a least-squares refinement. If 
particular parameters are especially sensitive to data of 
that block, then marked increase in their resultant 
standard deviations will indicate this. Nevertheless, 
the procedure may not be a desirable one, as one is 
never dealing with an idealized least-squares procedure 
in which the observations suffer only from random 
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TABLE IV 
OBSERVED AND CALCULATED STRUCTURE AMPLITUDES X 10 (IN ELECTRONS) 

I. L ii I L  .... * .  ...... 4 L I" ,' L L *tJ f L  .... ". Q Y  .... L L FO I( L L F" rc  L. L PO ?C 

1 6 561 578 
I 7 993 1018 
I 8 127 .I. 

I 12 121 111 
1 11 I18 I21 
1 1. IO9 I27 
P .lI I IS  205 
2 -10 273 211  
2 -9 I T 0  208 
2 -8  113 619 
2 -7 316 125 
2 4 IO6 11. 
I -5 i i z e  1 1 6 5  
2 -1 12116 1356 
2 -1 67 19 
2 -2 97 9e 
2 - 1  711  690 
2 0 2397 2bUO 
2 1 1.21 11v. 
2 2 129" 1211 
2 I $55 4.1 
2 * 1277 ,306 
2 5 56. 572 
2 6 3 1 V  IC0 
2' 7 I21 9 6  
2 I 272 280 
2 9 221 271 

z I1 112 !UP 
3-12 161 17b 
I -10 5lb 551 
J -7 80 91 
3 -6 112 1% 
3 -5 62b 627 
3 -b  365 166 
I -1 361 379 
3 -2 IOQO 1021 

I 0 110 105 
I 2 1591 1610 

3 5 111 119 
1 6 8.8 11.1 
I 8 175 156 
1 12 Zb* 251 

-12 111 I10 
6% -9 $26 L i e  
L -8 117 712 
6 -7 191 110  . -6 e6 52 
4 -5 11') .lb . .. 971 951 
4 -1 +$L I41 
4 -2 798 796 
b -1 676 678 

+ > 711 7.0 . Z 261 P @ l  
4 1 71 b+ 
4 6 1011 996 
L 5 716 720 
4 6 127 1.1 

a 717 7 0 +  
4 9 112 161 . 1, 112 I. 
b 12 227 2bb 
b 11 177 I90 

5 -9 256 265 
5 - 7  711 122 
5 -6 171 196 
5 .5 .97 LbL 
5 -1 918 981 
5 - 2  b29 4 1 0  
5 -I I l l  870 
5 0 15. 356 
5 1 .L* 505 
5 2 697 7 Y I  
5 1 P P I  1016 
5 4 116 I20 
5 5 201 I96 
5 6 292 276 
5 1 a 9  (1.1 
5 I 112 17. 
5 1 1  .I9 111 
5 12 IO1 1 Y l  
b 111 12" 12. 
6 -I 159 I60 
6 - 5  '111 9.7 
6 -6 61 39 
6 - 3  153 757 

I 9 186 in*  

2 12 12e 112 

i -I 118. itas 

; : 8:: 2:: 

I o 183 i ae  

5 -11 ti. m 

- I  811 004 In' 
6 0 171 171 
6 1 1057 I067 
6 2 6 1  I O  
6 I 4.1 651  
6 I I 2 C  95 
6 5 111 7% 
6 6 210 217 
(I 1 99 65 
6 a 172 I U I  
L 1 1  96 51 
7 -10 26, 265 
7 -7 242 251 
I -1 358 17* 
7 -5 216 216 

7 -1 820 7b3 
7 -2 260 251 

I I 9. *E 
I 2 .I" $21 
7 1 Leo e*, 
7 5 221 2.1 

7 IO 280 In0 
7 * I  181 601 
7 I2 221 215 * .e 111 1.1 
8 -+ 62. 122 
I -1 IO1 5s 
(I -2 175 I.9 
8 - I  I 7 8  l b l  
I 0 654 I 9 1  
8 I 1.1 1.2 
I 2 171 I61 
e 1 211 2bl 
I )  4 165 618 
e 6 21s 2 1 1  

II I O  IO* 311 
9 -1 22e 220 
9 -1 36" 115 
P -2 863 

- 1  377 1 J 2  
0 119 I l b  

r -6 2.2 251 

; -l 0 p28 142 y'' 117 

7 6 46s ase 
I 7 370 i n s  

e P 255 21e 

9 I I72 151 
e 2 103 I72 
9 I 112 297 
9 4 310 107 
P 8 119 1 Y I  
9 IO 20. 145 

IO - 7  I12 112 
IO - I  111 15') 
IO 0 631 617 
IO 1 29. 2b2 
I O  L 117 311 
10 7 121 112 
IO 8 211 222 
10 P 262 2b6 
I I  -7 2.1 11, 
1 1  -6 I15 108 

I I  - 4  I l l  I15 
11 . 82 55 
I I  5 200 215 
I I  6 $9 I26 
1 1  I 40, 600 
I I  " 97 11 
I2 - 7  1PZ 218 
12 .I 1.7 229 
12 -6 1 1 1  n e  
I2 -1 2.b 271 
12 -2 79 63 
12 -1  302 
12 0 1.9 4:; 
I2 I I55 126 
12 z 1.2 13'1 
12 I 1.8 I b l  
I2 5 1.0 1 1 0  
I2 1 I25 97 
I1 -5 L O O  115 
I1 -1 1011 1.1 
13 -2 260 112 
I1 -1 111 212 
11 0 114 I b O  
I1 I 158 2 0 1  
I3 2 I84 202 

I 3  + 1.6 I53 
1b 0 1.2 1% 
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where agreement was particularly poor, but this seemed 
to us to  be too arbitrary. Accordingly since further 
data collection was not a t  that time feasible, we de- 
cided to drop the entire block of data. The fact that 
atomic parameters derived with or without the data 
from crystal I1 do not differ significantly adds support 
to the present essential, but perhaps undesirable, pro- 
cedure. 
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errors. In  the practical instance where observations 
are also subject to systematic errors i t  is more difficult 
to predict what effects on the derived parameters changes 
in the observations will have. In the present case it 
was very clear that the data collected from crystal I1 
were inferior, probably because decomposition was 
most evident with this crystal. We could have dropped 
out the last quarter or perhaps half of the data block 



2772 Inorganic Chemistry, VoZ. 9, No. 12, 1970 BETTY R. DAVIS AND JAMES A. IBERS 

Ru-N 1-C1 109.1 (6) 
Ru-NZ-C~ 107.5 (6) 
R~-h’3-C3 110.3 ( 6 ) )  
Ru-iX4-C4 107.5 (6) 
m - c 1 - c 2  108.9 (9)’ 
N2-CZ-Cl 108.8 ( 9 ) )  
5 3  -c3-c4 108.6 (9) 

Figure 1.-A stereoscopic pair of views of the contents of a unit cell. 

109 (1) 

109 (1) 

Description of the Structure 
The structure consists of discrete PFe- and Ru(N8)- 

(Nz) ( N H z C H ~ C H ~ N H ~ ) ~  + ions with no crystallographic 
symmetry imposed upon either. A stereoscopic pair of 
views of the contents of a unit cell is given in Figure 1. 
The closest, nonbonding contact of each of the amine 
hydrogen atoms is given in Table V. On the basis of 

TABLE V 
N-H . . . B INTERACTIONS AROUND CALCULATED 

ETHYLENEDIAMINE HYDROCEX POSITIONS 
N-H-BC 

B” Na Hb H . . . B , A  N. . sB, r f  angle,deg 
F1 1 1 2.28 3.18 167 
N7 1 2 2.37 3.15 146 
N5 2 1 2.43 3.27 153 
F4 2 2 2.82 3.45 129 
N7 3 1 2.48 3.04 120 
F4 3 2 2.48 3 .12  130 
F3 4 1 2.57 3.29 135 
F6 4 2 2.35 3 .18  154 

Q The numbering scheme of the cation is indicated in Figure 2. 
In the anion, F1 is trans to F2, F3 is trans to F4, and F5 is trans 
to F6. The numbering scheme is as indicated in Table 111. 
c All N-H distances were fixed at 0.90 A. 

Figure 2.-An overall view of the cation. 

structural data on N-H * * .F and N-H. . . N  bonds,I3 
any such hydrogen bonds in this structure are very 
weak. 

The coordination of the cation may be viewed in 
Figure 2 .  The ruthenium atom is octahedrally coordi- 

nated by six nitrogen atoms. A selection of intramo- 
lecular bond distances and angles, together with esti- 
mated standard deviations as derived with the inclusion 
of correlation effects, is given in Tables VI and VII. 

TABLE V I  
ISTRAMOLECULAR BOND DISTANCES 

Atoms Distance, .k Mean distance, A 
Ru-iYl 2.108 (9) 
Ru-Ii2 2,140 (9) 
Ru-IC3 2.109 (8) 
R u - N ~  2.144 (9) 
R u - N ~  2,121 (8) 
R u - N ~  1.894(9) 
N1-C1 1.470 (13) 
N2-CZ 1.495(13) 
N3-C3 1.474 (13) 
N4-C4 1.458(14) 
Cl-C2 1.509(14) 
c3-c4 1.504 (15)/ 

2.125 (19)a 

1.474(15) 

1.507(14) 

1.162 (23) 
1.146 (11) 

K8-N9 1.106 (11) 

N5-li6 
K6-N7 

1.560 (8) 
P-F 1 
P-F2 
P-F3 
P-F4 

1.548 (10) 
1.524(9) 1.546 (24) 

1. 1.545 517 (10) (lo)] 
P- F5 
P-F6 

The standard deviation given for an average quantity in 
this table is that  for an individual estimate as derived from the 
collection of values assumed to be equivalent or from an indi- 
vidual standard deviation, as obtained from the inverse matrix, 
whichever is the larger value. On this basis i t  appears that in- 
dividual standard deviations derived from the inverse matrix 
are optimistic by a factor of 2 .  

(13) W. C .  Hamilton and J. A. Ibers, “Hydrogen Bonding in Solids,” N4-C4-C3 1 1 0 ~ )  J 
W. A. Benjamin, New York, PIT. Y., 1968. N5-N6-N7 180 (1) 
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On the assumption that chemically equivalent bonds 
are indeed equal in length, it appears that these derived 
standard deviations are optimistic by a factor of approx- 
imately 2. The derived standard deviations are reli- 
able if the data are subject only to random errors. Un- 
doubtedly systematic errors have been introduced into 
the data as a result of decomposition and so we use twice 
these standard deviations as a basis for discussion. The 
root-mean-square amplitudes of vibration along the 
principal axes of vibration for atoms refined anisotrop- 
ically are given in Table VIII. The directions of vi- 

TABLE VI11 
ROOT-MEAN-SQUARE AMPLITUDES O F  VIBRATION (IN A) 

Atom Min Intermed Max 

Ru 0.168(1) 0.189(1) 0.233 (1) 
N l  0.189 (13) 0.204 (13) 0.268 (14) 
c1 0.193 (16) 0.234 (16) 0.248(16) 
c2 0.191 (17) 0,245 (16) 0.268 (16) 
N2 0.169 (13) 0,205 (13) 0.292(13) 
N3 0.165(13) 0.223 (12) 0.270 (13) 
c 3  0.189 (19) 0.240 (17) 0.313 (16) 
c 4  0.155 (19) 0.269 (17) 0.276 (16) 
N4 0.193 (13) 0,228 (12) 0.249 (13) 
N5 0.167(12) 0.189 (13) 0.275 (12) 
N6 0.206(14) 0.210 (12) 0.269 (14) 
N7 0.200 (14) 0.273 (14) 0.344 (14) 
N8 0.187(15) 0.217 (13) 0.242 (12) 
N9 0.161 (17) 0.290 (14) 0.339 (13) 
P 0.210 (5) 0.225 (5) 0.320 (5) 
F1 0.225 (11) 0.284 (10) 0.396 (11) 
F2 0.208(11) 0.296 (11) 0.540 (12) 
F3  0.240 (12) 0.349 (12) 0.553 (14) 
F4 0.232 (12) 0.319 (12) 0.592 (14) 
F5  0.258(13) 0.330 (12) 0.594 (16) 
F6 0.255(12) 0.359 (13) 0.551 (15) 

bration of atoms in the cation may be discerned from 
Figure 2. Figure 2 also displays the numbering scheme 
employed for the cation. 

The hexafluorophosphate anion is not unusual in any 
way. The six values of the P-F bond distance range 
from 1.517 to 1.581 (8) k to give a mean distance 
of 1.546 (24) k.  Owing to the large amount of thermal 
motion associated with the F atoms (Table VIII) this 
mean distance is necessarily shorter than the distance 
corrected for the effects of thermal motion. Such a cor- 
rection does not appear to be feasible here, as the motion 
appears to  be a combination of bond stretching, bond 
bending, and rigid-body torsional modes. Neverthe- 
less, the mean distance is comparable with the P-F dis- 
tance of 1.58 8 found in various PFO- salts.16 The 
F-P-F bond angles range from 87.0 (5) to 95.0 (8)'. 

In  the ethylenediamine group, the four C-N bond 
distances have a mean value of 1.474 (15) k and the two 
C-C distances have an werage value of 1.507 (14) A. 
If we define the dihedral angle, CY, as that angle between 
the normal to the plane which contains the metal atom 
and the ring carbon atoms and the normal to the plane 
which' contains the metal atom and the ring nitrogen 
atoms, we would expect this angle to be nonzero for an 

(14) For reasons discussed in the text, this number is more realistically 

(16) H. Bode and H. Clausen, 2. Anorg. Chem., 466,229 (1961). 
1.517 (20) 8, instead of 1.517 (10) A. 

ethylenediamine ring in the gauche conformation. For 
the ring containing Nl-Cl-C2-N2, a is 27.6 (6)O, and 
for the ring containing N3-C3-C4-N4, CY is 26.6 (7)". 
These values compare well with the average value of 27' 
found in Cr(NH2CH2CH2NH2)a3+.16 If the azido and 
molecular nitrogen groups are ignored and one looks a t  
the plane containing the ruthenium atom and the two 
ethylenediamine rings, i t  is apparent that a pseudo-two- 
fold axis of rotation exists perpendicular to this plane. 
Upon rotation] C1 would go into C4 and C2 would go 
into C3. The weighted least-squares plane through 
these nine atoms is given in Table 1X. It is found that 

TABLE IX 
WEIGHTED LEAST-SQUARES PLANE. 

0.650% - 10.172~ + 6 . 3 1 2 ~  = 0.790 (MONOCLINIC COORDINATES) 
EQUATION OF PLANE : 

Dev from Dev from Dev from 
Atom plane, 8 Atom plane, A Atom plane, 

RU 0.0027(8) C2 -0.426(11) C3 -0.432(13) 
N1 -0.072(8) N2 -0.027(8) C4 0.244(12) 
C1 0.252(11) N3 -0.101(9) N4 -0.097(9) 

C1 and C4 are approximately 0.2 8 above the plane and 
C2 and C3 are 0.4 k below the plane. The N-Ru-N an- 
gle associated with the ethylenediamine groups is 81.6 
(3)" owing to the "bite)) of the ligand. The four Ru-N 
bond distances give a mean value of 2.129 (19) 8. As 
may be seen by comparison with various Ru-N bond 
lengths in Table X, the Ru-N bond length associated 

TABLE X 

SELECTED METAL-NITROGEN BOND LENGTHS 
Bond 

Compound type Distance, A Ref 
KzOsNCli M S N  1.614(3) a 
ReNClz(P(C6Hs)s)z M=N 1.602 (9) b 
ReCls(NCsH4OCHa) (PCsHa(CzHa)z)t M=N 1,709 (4) c 
ReCla(NCsH~COCHs)(PCsHa(CzHa)z)z M=N 1.690 (5) c 
ReCla(NCH8) (PCeHs(CzHa)z) z M=N 1 685 (11) d 
Ka[RuzNCls (HzO)z] M=N 1.718 e 

[Ru(NHa)el (BFds M-N 2.105 (4) 

[Ru(NHs)aNzRu(NHa)a] (BF4)r 

[Ru(NHs)alIz M-N 2.144(5) f 

M-N 2.12 (equatorial) g 
M-N 2,104 (6) (axial) 

M=N 1.928(6) (Nz) 
M-N 2,125 (19) (mean) I M=N 1.894 (9) (Nz) 

I f  1 [Ru(Ns) (N1)(NHzCHzCHzNHz)z]PFo M-N 2.121 (8) (azido) h 

See ref 3. R. J. Doedens and J. A. Ibers, Inorg. Chem., 6, 
204 (1967). D. Bright and J. A. Ibers, ib id . ,  7, 1099 (1968). 

M. Ciechan- 
owicz and A. C. Skapski, Chem. Commun., 574 (1969). H. 
Stynes and J. A. Ibers, unpublished results. I. M. Treitel, 
M. T. Flood, R .  E. Marsh, and H. B. Gray, J .  Amer. Chem. Soc., 
91,6512 (1969). I, This work. 

with the ethylenediamine groups is in the range ex- 
pected for a single-bond distance. 

The coordinated azido group is of interest in this com- 
pound since relatively few structures are known in which 
this group is a ligand. These include coordination of 
the ligand to copper," cobalt,18 and iron.lB It appears 

D. Bright and J. A. Ibers, ibid. ,  8,703 (1969). 

(16) K. N. Raymond, P. W. R. Corfield, and J. A. Ibers, Inorg .  Chem., 7 ,  
842 (1968). 

(17) I. Agell, Acta Chem. Scand., 21, 2647 (1967); 2. Dori, Chem. Com- 
mun., 714 (1968); R. F. Ziolo, A. P. Gaughan, 2. Dori, C. G. Pierpont, and 
R. Eisenberg, J .  Amer.  Chem. Soc., 92,738 (1970). 
(18) G. J. Palenik, Acta Crystallogr., 17, 360 (1964). 
(19) J. Drummondand J. S. Wood, Chem. Commun., 1373 (1969). 
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TABLE XI 
BOND LENGTHS AND BOND ANGLES IN COORDIXATED AZIDES 

Compound N-N, A M-N or H-N, A M-N-N, deg Ref 

1,240 (3) 
1,134 (3) 
1.154 (15) 

l . l S ( 3 )  

1.208(7) 
1.145 (7) 

i 1.02 (1) 112.65 (50)  a 

b 

1.971 (14) (equatorial) 135, I 
2.041 (15) (axial) 

1.943 (5) 125.2 (2j 

c 

d 
i 

2.121 (8 )  116.7 ( 7 )  e 

[l .  163 (23) (mean) 
a E. Anikle and B. P. Dailey, J .  Chem. Phys., 18, 1422 (1950). * B. L. Evans, .4. D. Yoffe, and P. Gray, Chem. Reu., 59, 515 (1959). 

L See ref 19. d See ref 18. e This work. 

on the basis of the data in Table XI that if the azide is 
covalent, as in HN3, the N-N bond lengths are not 
equal, but they are equal in an ionic azide, N3-. The 
asymmetry of the azido group coordinated to a transi- 
tion metal is open to question. In [Co(N3)(NH3)5]- 
(N3)zI1' the azido group is asymmetric whereas in (As- 
(C6H5)4)2[Fe(N3)5]19 the azido group is reported to be 
symmetric. In  the present structure, the N-N dis- 
tances do not differ significantly and average 1.162 (23) 
A. The Ru-N bond distance associated with the azido 
group is that of an M-N single bond (M = metal), as 
has been found in other transition metal--azido com- 
plexes. The Ru-N-N bond angle is 116.7 (7)", some- 
what smaller than the M-N-N angle found in the other 
two complexes listed in Table XI. 

The geometry of the coordinated molecular nitrogen 
is the same as that reported in other dinitrogen com- 
plexes. There is no significant lengthening of the 
N-N bond upon coordination, as may be seen by exani- 
ination of the bond lengths listed in Table XII. The 

TABLE XI1 
NITROGEN-NITROGEN BOND LENGTHS 

Nzk)  1.098 a 

[ R u ( K H ~ ) ~ N ~ R u ( P \ ~ H ~ ) ~ ~  (BF4)4 1.124(15) c 

a P. 6. Wilkinson and N. R. Hcuk, J .  Gkem. Phys., 24, 528 

Compound Distance, A Ref 

COH (Nz) (P (C~H5)3)3 X.l12(11) b 

[ K u ( ~ U ' ~ ) ( N ~ ) ( N H Z C H Z C ~ Z ~ ~ Z ) ~ ]  I'F6 l . l 0 6 ( l l )  d 

(1956). b See ref 1. c See ref 22. T h i s  work. 

Ru-N bond length of 1.894 (9) A is significantly 
shorter than an M--N single bond distance but not as 
short as an M=N bond distance, as seen by comparison 
with various M--N and M=N bond lengths listed in 
Table X and by comparison with the Ru--N bond dis- 
tance of 2.121 (8) A associated with the azido group and 
the mean distance of 2.125 (19) A associated with the 
ethylenediamine groups found in this present study. 
The Ru-N distance is comparable with the mean 
Ru-C distances of 1.94 (3) and 2.01 (6) A found in Ruz- 
(CO)8Br4zo and R u ( C O ) & , ~ ~  respectively. Therefore, 
as we have stated earlier, the bonding between a transb 
tion metal atom and molecular nitrogen is very similar 
to that between the metal and the isoelectronic ligand 
carbon monoxide. It is interesting that the N-N bond 
distance in this compound, as io C O H ( N ~ ) ( P ( C ~ H ~ ) ~ ) ~ , ~  
is not significantly shorter than the N.-N bond length 
found in the bridging species [Ru (NH3)5N2Ru (NH3)b ]- 
(BF4)4. 2 2  
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